数学教研

义务教育小学数学课程标准(2011年版)解读(一)

发布时间:2012-09-27 发布者:csz 阅读 : 3667

新课标自我解读

一、数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

人人都能获得良好的数学教育:良好的数学教育,就是不仅懂得了知识,还懂得了基本思想,在学习过程中得到磨练。义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。

课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;

要符合数学科学本身的特点、体现数学科学的精神实质;要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;

要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。

不同的人在数学上得到不同的发展现代儿童观认为,在每一个儿童身上都蕴藏着巨大的教育潜能,我们的教育必须充分尊重儿童的内在素质,即自然天性,小心加以呵护、开发。要面对每一个有差异的个体,适应每一个学生不同发展的需要,要为每一个学生提供不同的发展机会与可能。数学课程必须立足于关注学生的一般发展,它应当是“为了每一个孩子”健康成长的课程,而不能成为专门用来淘汰的“筛子”。

教学实践:

①了解并掌握不同家庭中的孩子在家庭和学校中的学习状况,充分了解学生的学习起点,

②创设多元智能的环境,把握“为多元而教”和“用多元而教”的原则,革新学习的方式,开发与应用“多维”学习活动的教学资源,创设一个适合儿童生活和学习的“聪明环境”,整合教育资源,形成新的合力,让每一个儿童的创造潜能在学习中得到开发,让每一个儿童的多元智能得到培养,最大限度地激发学生实现自我的愿望和学习的最优化。

③“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞。”恰当的评价将拉近师生的情感,使教师由一名评判者变成学生的鼓励者和支持者,使学生得到尊重,使每个孩子都能从学习中体会到快乐和成功的喜悦。建立一套全方位的多元化的科学的评价体系,是开发与实施多维学习的有力保障。

二、课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。

⑴它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。

⑵课程内容要贴近学生的生活,有利于学生经验、思考与探索。

⑶内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与知识系统性的关系。

⑷课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求。

1、它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。

数学是研究数量关系和空间形式的科学。学生学数学与不学数学最本质的区别在于培养人直观的能力、演绎的能力、逻辑地思考!其实就是以数学知识为载体促进学生思维的发展。这是数学学习的本质。

数学知识和数学思想方法就是数学的核心。近几年来出现的“去数学化”倾向就是忽略了数学知识本源和数学思想方法。究其原因是因为过于关注形式,淡化了本质。抓住数学知识本源和数学思想方法,与新课程理念所倡导的理念有机整合,纠正“去数学化”倾向,还数学教学本来面目!

(一)把根留住——追溯数学本源:

⒈小学数学中的数学知识本源与数学思想方法;化归思想、优化思想、符号化思想、集合思想、函数思想、极限思想、分类思想、概率统计思想等;归纳与演绎,分析与综合,抽象与概括,联想与猜想等方法。

2. 抓住数学知识本源与数学思想方法的意义与价值。

(二)凸显本色——还数学教学本色

1.针对具体的数学知识,知道知识本源和蕴含在知识背后的数学思想方法。

1)通过数学史的学习了解数学知识产生的背景和发展的过程,知道来龙去脉,也就把握了知识本源和数学思想方法。(例如:向学生介绍十进制计数法的由来)

2)深入挖掘教材,教材的编排蕴含了知识的本源和思想方法。(例如圆面积推导里无限分割的极限思想的渗透。)

2.在实践中怎样以数学知识本源与数学思想方法为主线展开教学设计。

⑴在知识的发生过程中要抓住知识本源,突出知识的产生与形成过程。

让学生处于需求新知的状态——创设的问题情境要蕴含数学知识的本源

让学生处于解决问题的状态——探索的过程中要有思考知识本源的任务

(以《1000以内数的认识》一课为例,来阐述是怎样抓住数学知识本源进行教学设计的。这部分知识的本质是位值制、进位法、符号化思想。)

2)在法则归纳、公式推导、结论的发现过程中以思想方法为主线,凸显思考过程。

①围绕一种数学思想方法为主线展开教学(平行四边形面积的推导——转化)

②围绕多种数学思想方法为主线展开教学(三角形内角和的推导——猜想、验证、转化等)

③结合某个点渗透数学思想方法

总之,知识是基础,方法是中介,思想才是本源。有了思想,知识与方法才能上升为智慧。数学是能够增长学生智慧的学科,我们只要抓住数学本质,与新课程理念有效结合,才能发挥数学教育的最大价值,凸显数学本色!这样做本身就是使数学课回归数学味,找回数学教学的灵魂!

2、课程内容要贴近学生的生活,有利于学生经验、思考与探索。

①数学学习要以学生的发展为本,要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源。我们的学生就是一个个资源开发者,学生自身的知识、经验、智力、情感等因素,构成了学生内在的“资源”,一个学生就是一个独特的“资源点”。“心中有学生、眼中有资源”。

②数学是来源于生活而最终服务于生活的,尤其是小学数学,在生活中几乎都能找到其原型。贴近学生的生活的资源,可以将学生的那些常识性、经验性的知识派上用场,在数学世界里开拓出可供他们思索、探讨和发展的用武之地。

③教师应把握学生的现实经验,并对之进行分析、澄清、引导、回应,从而实现学生对知识创造性转换和沟通、交融的过程。这样的一个过程,可以看作儿童关于知识的原有基础的发展或转变,而不是新信息的点滴累积过程。

3、内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与知识系统性的关系。

过程与结果的关系

这个过程大体上包括:发现实际问题中的数学成分,并对这些成分做符号化处理,把一个实际问题转化为数学问题;对符号化的问题做进一步的抽象化处理,尝试建立和使用不同的数学模型,发展为更完善、合理的概念框架。

过程和结果同样重要。应该强调:结果应该是学生通过一定的探究过程获得的,不是教师直接传授的。重“过程”中的发现、感悟、体验,同样也应兼顾过程之后出的“结果”。

重视儿童在活动过程中的态度、情感、行为表现,重视儿童活动中付出努力的程度,以及过程中的探索、思考、创意等。即使活动的最后结果没有达到预期的目标,也应从儿童体验宝贵生活经验的角度加以珍视。

两大目标,既各有内涵,又相辅相承。在实施过程中,要辩证地处理两者的关系,那种不注重学习过程而侈谈知识和技能的获取是不可取的;同时,情感、态度、价值观的形成也不应脱离知识技能,它们是与知识的掌握、技能的获取紧紧地融在一起的。

直观与抽象的关系:⑴重视直观演示和归纳抽象:教师在教学活动中,应从直观入手揭示事物的特征及数量关系,引导学生通过分析、归类、综合等方法进行抽象概括,从而得出正确的结论。如在教学“加法”概念时,教师可先进行直观演示:岸边有5只鸭子,水里有3个鸭子。水中的鸭子缓缓游向岸边。问学生岸边一共有几只鸭子?通过简单、生动的演示,引导学生抽象出“把两个数合并起来求一共是多少的计算叫加法”这一概念。

⑵处理好直观性与抽象性的关系:直观是手段,抽象是直观的发展。不能从抽象到抽象,使学生难以理解教学内容,也不能为直观而直观,把教学仅仅停留在直观演示上,而是在加强直观演示的基础上,帮助学生归纳出事物的本质特征及数量关系。随着学生年级的升高,抽象思维能力的增强,可逐渐减少学生对直观演示的依赖性,提高学生的抽象思维能力。

生活化、情境化与知识系统性的关系

生活化是指将抽象的数学知识、方法以生活原型、现实情境的方式呈现,让学生在感兴趣、已有的生活经验的基础上建构自己的认知体系。要求数学教学从生活中、从学生已有的现实背景出发,捕捉贴近学生的生活素材,选取学生生活中熟悉的人、事、物等数学实例,挖掘数学原型,让学生体会到数学的生动有趣,从而激发学习的兴趣。

情境化:从数学学习的认知本质看,数学学习离不开情境。事实上,学生学习知识的过程本身是一个建构的过程,无论是对知识的理解,还是知识的运用,都离不开知识产生的环境和适用的范围。也就是说,学习中的建构过程总是与知识赖以产生意义的背景及环境关联在一起的,即知识与学习总是具有情境性的。注重情境化设计,加强数学与学生生活的联系,就成为数学课程及课堂教学改革的一个重要的切入点。

知识系统性:数学知识本身具有严谨性、系统性。就小学生的数学学习而言,数学化也可以说成是引导学生亲身经历将实际问题抽象成数学模型的过程。生活化、情境化的最终目的是超出生活(生活数学)并上升到“数学模型”(书本数学)。

教学实践:

“问题情境——建立模型——解释,应用与拓展”教学模式

三点注意:从“生活经验”出发而非从“生活情境”出发,就来源看,后者一般是数学问题的现实生活素材,而前者除了可以来自现实生活外,也可以来源于数学自身和探究中引发的新的情境,即数学情境并不局限于现实生活素材;应杜绝重形式不求实质的数学情境化设计,不要因关注“生活味”而忽略本质的“数学化”过程;不是所有的数学知识都要追求“生活化”,都成追求“生活化”。

4、课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求(因材施教原则)。

①直面学生的差异是一个永恒的话题,我们应该直面孩子的差异,承认孩子的个性,发展孩子的个性,给孩子提供机会让他们把自己独特的个性展现出来。设计有差异的课程,实施有差异的教学,获得有差异的评价,意义就变得极为重大。

构建弹性化的课程体系。根据孩子不同的发展需要和学习需求,建立多元化、有层次、可选择的课程体系,以老师给学生“配餐”和学生自己“点菜”等方式,使每一位学生拥有一份个性化的学习过程,在营造一个尊重孩子个性的开放的学习环境中,按照“不同学生——不同个性——不同选择——不同教学”的操作思路,让学生自我选择,让“腿长”跑得快、“肚子大”的学生都能吃得饱。通过尊重学生的选择,营造课堂的和谐氛围,给学生以更大的学习自主权。

直面差异,构建差异性课堂。直面孩子的差异,对影响课堂教学的要素进行弹性设计,教学目标弹性设置;课程内容弹性处理;课堂组织灵活多变;作业有难有易;关注孩子自主选择,评价个性化、动态化、多元化,注重因材施教,注重教学内容的多元性与层次渐进的结合,注重教学中的可操作性和灵活性,营造课堂的和谐氛围,促进学生和谐发展。

三、数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生是数学学习的主体,教师是数学学习的组织者与引导者。

1.数学教学过程是教师引导学生进行数学活动的过程

⑴数学活动是学生经历数学化过程的活动。也就是教师引导学生亲身经历将实际问题抽象成数学模型的过程。

⑵数学活动是学生自己建构数学知识的活动。数学学习是学生自己建构数学知识的活动,在数学活动过程中,学生、教材及教师产生交互作用,形成数学知识、技能和能力,发展情感态度和思维品质。在此过程中学生应当是主动探索知识的“建构者”,决不是模仿者。但是离不开教师的价值引领。

2.数学教学过程是教师与学生之间互动的过程。

学生是数学学习的主体,教师是数学学习的组织者与引导者。教师角色转变的重心在于使传统意义上的教师教和学生学,不断让位于师生互教互学,彼此形成一个真正的“学习共同体”。

组织者的含义包括组织学生发现、寻找、搜集和利用学习资源、组织学生营造和保持教室中和学习过程中积极的心理氛围等;

引导者的含义包括引导学生设计恰当的学习活动,引导学生激活进一步探究所需的先前经验,引导学生围绕问题的核心进行深度探索、思想碰撞等;

此外,教师还应与学生建立人道的、和谐的、民主的、平等的师生关系,让学生在平等、民主、和谐的氛围中学习。

3.数学教学过程是师生共同发展的过程

⑴教学过程促进了学生的发展。包括知识与技能、数学思考、问题解决和情感态度四个方面。

⑵教学过程促进了教师本身的成长。教师应在教学过程中用于实践、不断加深对数学规律的认识,努力形成自己的教学艺术;数学教学过程不再是机械地执行教材的过程,而是师生从实际出发,共同开发课程和丰富课程的过程,教学真正成为师生富有个性化的创造过程。

四、⒈ 数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考;要注重培养学生良好的学习习惯、掌握有效的学习方法。

 学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。

 教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的机会。

 要处理好教师讲授和学生自主学习的关系,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生真正理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得广泛的数学活动经验。

 数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考

儿童贪玩好动,好问好奇,好胜上进,这成为儿童快乐生活的本质。儿童世界充满童心、童真、童趣,儿童文化是一种诗性文化,需要激情,也需要活力。活动的学习充满着想象的色彩,瑰丽、神奇,常常能带领孩子走进一个充满无限遐想空间的学习世界。因此,真正适合儿童的学习,应该是一种“活的学习”,一种能从内心深处唤醒儿童沉睡的想象力和激情的学习。

要注重培养学生良好的学习习惯、掌握有效的学习方法。

⑴良好的学习方法、有效的学习方法对促进学生学习,培养学生终身学习能力具有重要的作用。学生只有具有良好的学习习惯、掌握有效的学习方法,变“学会”为“会学”, 才能体验到学习的乐趣,激发出自身的潜能,提高学习质量与效益。 返回顶部 打印 关闭